

PIOX® S 비접촉식 밀도, 질량유량 측정계

Flow rate - Concentration - Density

- Acids
- Caustics
- Salts
- Solvents

PIOX® S - 안전하게 배관 외벽에서 측정

PIOX® S는 배관 외벽에 장착된 Clamp-on 초음파 트랜스듀서를 통해 질량 유량, 농도, 밀도 및 기타 매개 변수를 측정합니다. 비접촉식 측정 기술은 유체와 공정의 안전과 신뢰성을 가장 높은 요구하는 경우 선택하는 시스템입니다.

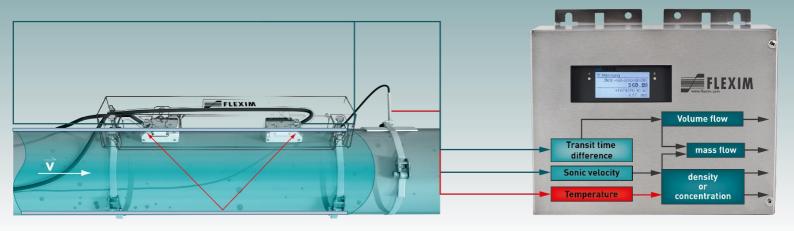
정확하고 신뢰할 수 있는

- → 드리프트 없이 지속적인 안정적 측정
- → 최저 및 최고 유속에서 정확한 측정
- → 고형물 또는 기포가 포함된 액체 무관
- → 측정 품질의 지속적인 모니터링

안전하게 사용 가능

- → 배관 외벽에 트랜스듀서 장착으로 배관 개조 불필요
- → 유지보수가 필요 없는 측정 시스템
- → 누출 위험이 없음

내구성과 장기적인 안정성


- → 유체에 직접적인 접촉이 없으므로 부식 위험 없음.
- → 움직이는 부분, 진동, 재료의 피로가 없음.
- → 압력 제한 없음
- → 열악한 산업 환경용

비용 효율적이고 경제적

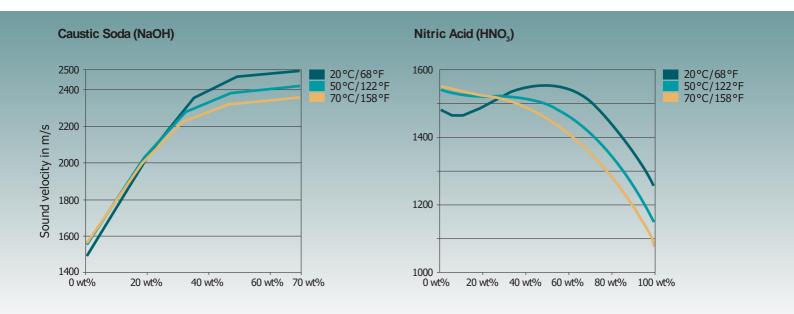
- → 시운전을 위해 공정 중단 필요 없음
- → 특별한 재료나 바이패스 솔루션이 필요하지 않음
- → 잔고장이 없음
- → 질량 유량과 농도, 밀도 동시 측정

원칙적으로 파괴 불가

PIOX® S는 음속을 측정하여 배관 내부 매체의 밀도와 농도를 결정합니다. 체적 유량을 동시에 기록함으로써 PIOX® S는 자동으로 질량 유량을 계산합니다.

다양한 어플리케이션

강철, 플라스틱, 유리 또는 코팅된 특수 재료에 관계 없이 다양한 배관 크기 및 재료에 사용 가능. 최대 400°C의 온도용.


거의 모든 산, 부식제 및 광범위한 기타 독성 매체에 사용됩니다.

위험 지역의 경우 트랜스듀서와 트랜스미터는 ATEX, IEC 및 FM 인증 변형으로 제공됩니다.

플랜트 가용성 - 공정 운영 중에도 측정계를 설정할 수 있습니다.

- 질산
- 황산
- 불산
- 인산
- 나트륨/수산화칼륨 용액
- 암모니아
- 질산암모늄
- 소금물
- 알코올, 글리콜
- 카프로락탐 및 기타 여러 매체

다수의 바이너리 미디어 시스템에서 음속은 농도와 밀도에 대해 고정된 비율입니다. PIOX® S에는 광범위한 물질 데이터베이스가 포함되어 있어 다양한 산, 부식제 및 기타 화학 매체에 대한 정확하고 신뢰할 수 있는 밀도, 농도 및 질량 유량을 실시간으로 결정할 수 있습니다.

PIOX® S : 가장 이상적인 제품

수산화나트륨의 농도 및 질량 유량 측정

염소-알칼리 전기분해는 화학 산업의 핵심 공정 중 하나입니다. 염기성 물질인 염소, 수산화나트륨 및 수소를 제공합니다. 독일의 주요 화학 현장에서는 염소-알칼리 전기분해 동안 생성 된 수산화나트륨이 다단계 증류 공정에서 증발됩니다. 농도 측정 을 위해 설치된 코리올리 유량계는 부식성 유체에 의해 심하게 마모되어 만족스러운 수명을 얻지 못했습니다. 인라인 기기를 교 체하는 것은 시간이 많이 걸리며 공정 운영을 멈추고 배관을 비 우기 위해 며칠 동안 작동을 중단해야 합니다.

PIOX® S를 사용한 비접촉식 측정이 더 나은 솔루션임이 입증되었습니다. PIOX® S는 장기간에 걸쳐 안정적으로 유지되며 실험실에서 정기적인 제어 측정으로 입증된 바와 같이 측정 드리프트 없이 유지됩니다. 지속적으로 정확한 농도 측정을 통해 시스템이 항상 최적으로 실행되고 지정된 품질을 준수할 수 있습니다. PIOX® S는 동시에 질량 유량을 측정합니다.

장 점:

- → 측정계의 마모 및 부식 없음
- → 드리프트가 없고 유지 보수가 필요 없는 높은 내구성과 장 기간 안정적인 측정
- → 고가의 특수재료나 바이패스 솔루션 불필요

질산의 농도 및 질량 유량 측정

유럽 최대의 비료 제조업체 중 하나는 질산 병입 공장에서 PIOX® S를 사용합니다. 질산은 68%와 60%의 두 가지 농도로 운영됩니다. 더 낮은 농도가 필요한 경우 물을 추가하여 68% 질산을 희석해야 합니다. 측정 기술을 통해 필요한 농도의 준수 여부를 모니터링해야 합니다.

이 측정 작업을 위한 이상적인 솔루션은 PIOX® S입니다. Clamp-on 초음파 트랜스듀서가 배관 외벽에 간단히 장착되기 때문에 공정 유체와 직접 접촉하지 않습니다. 따라서 이전에 설치된 코리올리 유량계의 경우와 같이 부식이나 산 누출의 위험이 없습니다. Inline 측정계를 교체 방법과 같이 배관을 비우고 세척하기 위해 공정 중단을 할 필요가 없습니다. 또한, 체적 유량과 밀도의 동시 측정은 질량 유량의 출력을 허용하므로 충진 공정의 완전한 모니터링이 가능합니다.

장 점:

- → 부식이나 누출의 위험이 없음
- → 농도와 질량유량 동시 측정
- → 비접촉식 측정, 공정 운영 중단 불필요

PIOX® S

- 유체 접촉 없이 질량 유량, 밀도 및 농도 측정

PIOX® S에는 액체의 질량 흐름 및 농도의 비접촉식 측정을 위한 광범위하고 지속적으로 쌓여가는 방대한 데이터베이스가 포함되어 있습니다.

Medium name	Medium formula	Typical sound speed values	Medium name	Medium formula	Typical sound speed values
Acetic acid	$C_2H_4O_2$	1169 m/s	Hydrochloric acid	нсі	1521 m/s
Aceton	C ₃ H ₆ O	1182 m/s	Hydrofluoric acid	HF	1051 m/s
Ammonia	NH ₃	1794 m/s	Hydrogen peroxide	H ₂ O ₂	1483 m/s
Ammonium nitrate	NH ₄ NO ₃	2173 m/s	Isopropyl alcohol	C ₃ H ₈ O	1157 m/s
Ammonium sulfate	(NH ₄) ₂ SO ₄	1727 m/s	Lithium bromide	LiBr	1620 m/s
Calcium chloride	CaCl ₂	1703 m/s	MDEA	CH ₃ N- (CH ₂ CH ₂ OH) ₂	1628 m/s
Caprolactam	C ₆ H ₁₁ NO	1598 m/s	Methanol	CH ₃ OH	1127 m/s
Caustic potash	КОН	1948 m/s	Nitric acid	HNO ₃	1501 m/s
Caustic soda	NaOH	2375 m/s	NMP	C ₅ H ₉ NO	1560 m/s
Diethylene glycol	C ₄ H ₁₀ O ₃	1578 m/s	Oleum	SO ₃	1267 m/s
DMAC	C₄H ₉ NO	1474 m/s	Phosphoric acid	H ₃ PO ₄	1646 m/s
DMF	C ₃ H ₇ NO	1476 m/s	Potassium chloride	ксі	1517 m/s
Ethanol	C ₂ H ₅ OH	1145 m/s	Propylene glycol	C ₃ H ₈ O ₃	1515 m/s
Ethylene glycol	C ₂ H ₆ O ₂	1668 m/s	Sodium carbonate	Na ₂ CO ₃	1561 m/s
Ferric chloride	FeCl ₃	1712 m/s	Sodium chloride	NaCl	1767 m/s
Ferric sulfate	Fe ₂ (SO ₄) ₃	1472 m/s	Sodium hypochlorite	NaClO	1807 m/s
Ferrous chloride	FeCl ₂	1497 m/s	Sodium sulfate	Na ₂ SO ₄	1537 m/s
Ferrous sulfate	FeSO ₄	1496 m/s	Sodium sulfide	Na ₂ S	1591 m/s
Formalin	CH ₂ O	1608 m/s	Sulfuric acid	H ₂ SO ₄	1308 m/s
Formic acid	CH ₂ O ₂	1286 m/s	Triethylene glycol	C ₆ H1 ₄ O ₄	1612 m/s
Glycerol	C ₃ H ₈ O ₃	1927 m/s	Urea	CH ₄ N ₂ O	1625 m/s

해당 미디어는 PIOX® S에 대한 표준 데이터 세트로 사용할 수 있습니다. 고객 요청 시 대체 미디어 세트를 분석하여 제안할 수 있습니다.

Technical Data

	S 721	S 831	
Measurement principle	Transit time difference principle		
Measurement functions Physical quantities Totalizers Diagnostic functions	Volumetric flow rate, mass flow rate, flow velocity, sound speed, density Volume, mass fraction Signal amplitude, SNR, SCNR, standard deviation of amplitude and transit times		
Measuring Ranges Flow velocity Sound speed Pipe diameter Pipe surface temperature Ambient temperature	0.01 25 m/s 500 3000 m/s 10 6500 mm -40 +200 °C (+600 °C with WaveInjector®) -40 +60 °C		
Uncertainty¹ Mass flow rate Volumetric flow rate Sound speed / density / mass fraction	± 1.2 % of reading (as function of volumetric flow rate and density) ± 1 % of reading Defined by field calibration		
Repeatability ¹ Flow velocity Mass flow rate Volume flow rate Sound speed Density Mass fraction	± 0.005 m/s ± 0.25 % of reading (as function of volumetric flow rate and density) ± 0.15 % of reading ± 0.5 m/s ± 1 kg/m³ ± 0.1 wt%		
Transmitter Number of measuring channels	1 or 2		
Explosion protection	ATEX/IECEx Zone 2 or FM Class I Div 2	ATEX/IECEx Zone 1	
Power supply Outputs	100 230 V AC / 50 60 Hz 20 32 V DC 4 20 mA active 4 20 mA HART active/passive pulse, frequency, binary		
Process inputs	Maximum 4, available are: temperature (Pt 100/1000), current, voltage, binary or temperature, density	Pt100/Pt1000 (Ex-ia), 4 20 mA active current input	
Digital communication	Modbus RTU, HART, Profibus PA, Foundation Fieldbus		
Housing material	Aluminum or stainless steel 316L	Aluminum	
Transducers Explosion protection Temperature range [pipe wall]	ATEX/IECEx Zone 1/2 FM Class I Div 1 or 2 -40 +240 °C / WI: -200 +600 °C		

¹ 값은 참조 조건에서 일반적인 어플리케이션에 대한 근사치입니다. 특정 어플리케이션에 대한 자세한 값은 당사에 문의하십시오.

KOSFLOW Co., Ltd.

(21072) 인천광역시 계양구 서운산 단 로2길 72, B동 4층 4th FL Bldg. B, #72 Seowoonsan danro 2 gil, Gyetang- gu, 21072, Korea

 Phone
 82-32-422-6640

 Fax
 82-32-422-6650

 E-mail
 sales@kosflow.com

 Web
 www.kosflow.com

